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1. Introduction

Atomistic-to-continuum scale transitioning techniques have come to the fore in recent
years, accompanying and supporting widespread interest in engineering of nanoscopic
structures (Rudd and Broughton, 2000; Ghoniem et al., 2003; Fish and Chen, 2004).
Although marked increases in computing power over the last two decades have facilitated
large-scale atomistic calculations (cf. Seppälä et al., 2004), spatial and temporal scale-
transitioning schemes are presently in high demand since, at the current rate of increase in
computational performance, many years still remain before computers will attain the
capability to simulate the mechanical response (and/or thermal, electrical, or magnetic
response) of enough atoms, over a time scale of relevant duration, to realistically address
design of components or microstructures possessing spatial dimensions on the order of
micrometers or larger.

Existing atomistic-to-continuum modeling methods may be loosely grouped into two
categories: simultaneous or coupled approaches and sequential or decoupled approaches.
Simultaneous methods involve concurrent solution of governing equations at multiple
length scales (e.g. quantum mechanics, molecular dynamics, continuum mechanics), with
different regions of the spatial domain addressed by governing equations corresponding to
the associated scale of resolution of that region. Various algorithms, often quite
formidable with regards to numerical implementation, are then used to bridge or
‘‘handshake’’ neighboring regions of differing resolution, for example regions considering
molecular dynamics and continuum mechanics. Recent examples of coupled simultaneous
methods include, for example, the quasi-continuum theory (Tadmor et al., 1996; Shenoy
et al., 1999), the three-scale bridging technique of Broughton et al. (1999), and the dynamic
bridging scale method of Park et al. (2005). Such methods are efficient for solving problems
wherein the bulk of the material remains relatively homogeneous (and amenable to a
coarse-scale solution), with the fine scale physics confined to a small volume of interest,
such as at a crack tip, indentation region, or grain or phase boundary.

In contrast, sequential decoupled methods do not involve direct matching of boundary
conditions at multiple scales of resolution. Instead, fine scale calculations are conducted,
and then the pertinent information from the fine scale solutions is transferred to enhance
the representation of the response modeled at the coarse scale. For example, atomistic-
scale simulations of the motion of a representative number of atoms may be used to extract
bulk elastic and/or plastic properties (Hao et al., 2004) or interfacial properties (Spearot
et al., 2005) for subsequent implementation in continuum mechanics-based models.
Methods of this nature include approaches based on simultaneous conservation of mass,
momentum, and energy at disparate resolutions (Zhou and McDowell, 2002) as well as
those predicated on decomposition of the displacement vector into local and global
components (Hughes et al., 1998; Hao et al., 2004).

The asymptotic homogenization technique forwarded in the present paper (see also
Chung and Namburu, 2003; Chung, 2004) falls into the (latter) category of spatially
decoupled methods. In this approach, discrete calculations are conducted at the atomistic
level, with each characteristic volume element (i.e., unit cell) of atoms subjected to periodic
boundary conditions. Asymptotic homogenization methods (Bensoussan et al., 1978;
Sanchez-Palencia, 1980) are concurrently employed to deduce the macroscopic tangent
stiffness associated with the mechanical response of the aggregate. The Cauchy–Born
approximation (cf. Ericksen, 1984) is invoked for imposition of the bulk continuum



ARTICLE IN PRESS
J.D. Clayton, P.W. Chung / J. Mech. Phys. Solids 54 (2006) 1604–16391606
deformation, with the fine scale deformation of the atoms identified with the inner
displacements in the asymptotic approximation. In this way, the fine scale deformation (of
the atoms) near defect cores is corrected with the inner displacements from the
homogenization solution, thereby resulting in a lower-energy state for the system than
would be achieved via imposition of a uniform deformation gradient over all atoms
comprising the unit cell. The present approach is ideal for addressing the response of
microstructures containing spatially periodically distributed defects because only one or a
few defects need be simulated explicitly at the atomistic level within the context of the
periodicity assumption invoked in our homogenization scheme. However, due to this very
same periodicity assumption, the method suffers in the sense that isolated (i.e.,
nonrepeating) defects cannot be easily modeled. Our scaling concept is sketched in Fig. 1.
The atomistic-continuum homogenization technique forwarded here is characterized by

several distinctive features in comparison to alternative multiscale formulations. First,
asymptotic homogenization methods embody weak convergence in the two-scale
continuum sense (Nguetseng, 1989; Allaire, 1992), following from the transmission of
displacement gradients as opposed to displacements across length scales. Secondly, this
displacement-free embedding also obviates the need in our approach for potentially overly
restrictive boundary conditions between atomistic and continuum domains. Lastly, in
contrast to sequential modeling schemes in which material information is evaluated at a
finer scale and then passed to a coarser one, the asymptotic homogenization method
employs a self-consistent set of governing equations simultaneously involving the fine- and
coarse-scale descriptions.
Previous research (Chung and Namburu, 2003; Chung, 2004) addressed the effects of

pre-existing point defects on the effective elastic stiffness and strain energy density of
graphene. One focus of the present effort centers on the mechanical properties induced by
dislocations, the primary carriers of plastic deformation in crystalline metals. Owing to the
notion that the flux of dislocations leaves the crystal lattice relatively unperturbed upon
complete glide across the periodic unit cell, we appeal to the notion of an evolving relaxed
intermediate or natural configuration (Eckart, 1948; Bilby et al., 1957; Teodosiu, 1969;
Asaro, 1983). In this approach, finite inelastic (i.e., plastic) deformation is accounted for by
Fig. 1. Multiscale modeling schematic.
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the evolution of this relaxed configuration, as dictated by the dislocation flux through the
volume element. The instantaneous thermoelastic response of the element is measured with
respect to the natural configuration, and driving forces for defect propagation are
calculated at the current state or time instant, in order to project the intermediate
configuration forward temporally. Along similar lines, in an effort to connect nonlinear
continuum elasticity theory with the results of discrete atomistic calculations, Lill and
Broughton (2000) invoked the idea of an ‘obviated reference lattice’ characterized by a
slowly varying time dependence of the relaxed intermediate state, with a strain threshold
introduced above which relaxation from the elastically loaded state takes place. Groma
and Pawley (1993) investigated an analogous problem via discrete dislocation dynamics
simulations (as opposed to atomistics), considering in their case the superposition of elastic
stress fields from the defect ensemble as well as the energetically driven generation of new
defects.

Mechanical properties of interest in the present context include the elastic stiffness and
energy of crystalline materials in the presence of defects contained within the volume
element. We find that our decoupled approach of simultaneously modeling two length
scales readily enables parametric variations of the defect density via the prescription of the
number of atoms in the fine scale representation relative to the total number of defects
embedded within the periodic unit cell. Our framework is implemented numerically and
applied first to study the nonlinear elastic response of body-centered cubic (BCC) tungsten
(W) containing periodically distributed vacancies, screw dislocations, screw dislocation
dipoles, and low-angle twist boundaries (also described here using the disclination concept
of Li (1972)). In the above simulations, unit cells are deformed in uniaxial stretch to 2.5%
elongation. Our computational method is demonstrated, via direct comparison with
conjugate gradient-based lattice statics, to be an efficient means of predicting minimum
energy configurations of imperfect atomic-scale lattices subjected to finite deformations.
Next, results of larger-deformation shear simulations (to 10% applied shear strain) are
reported for the case of screw dislocation glide in BCC W, in which the evolving
intermediate configuration is updated assuming monotonic single slip occurs as resolved
shear stresses exceed the Peierls threshold (cf. Hirth and Lothe, 1982). The computational
procedure involves determination of a correction to the macroscopically imposed
deformation of the atoms in the vicinity of defects. Additional details regarding numerical
implementation, efficiency, and validation can be found in a companion paper (Chung and
Clayton, 2006).

The remainder of this paper is organized as follows. Section 2 features derivations of the
multiscale homogenization equations applicable to nonlinear elastic problems. Section 3
introduces the concept of an evolving reference configuration to address finite deformation
plasticity and the corresponding inelastic deformation gradient, as well as transformation
rules for the multiscale equations in the presence of this evolving frame. Additional
assumptions and limitations of our method relating atomistic variables, defect kinetics,
and continuum fields are given in Section 4, followed by a description of the numerical
implementation in Section 5. We present results of demonstrative simulations in Section 6
and offer perspective on the utility of our theory and results in Section 7. Vectors and
tensors are written in boldface type, with scalars and individual components of vectors and
tensors written in italic font. The indicial notation is frequently employed for clarity of
presentation, with summation implied over repeated indices, e.g. AiBi ¼ A1B1 þ A2B2 þ

A3B3 when i ¼ 1, 2, 3.
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2. Two-scale asymptotic homogenization

2.1. Governing equations

Reference and current configurations of a continuous body are introduced, denoted by
B0 and B, respectively. Let X and x represent coordinates spanning the reference and
spatial frames, and let xa ¼ xaðX A; tÞ, with t denoting time. The deformation gradient or
tangent mapping F from B0 to B is then written

F ¼
qx
qX

; Fa
:A ¼

qxa

qX A
. (1)

The following strain measures are also introduced, where GAB ¼ qAXdqBX

and gab ¼ qaxdqbx denote, respectively, metric tensors in reference and spatial coordinate
systems:

CAB ¼ Fa
:AgabF b

:B; 2EAB ¼ F a
:AgabF b

:B � GAB. (2)

Let R, P, and S denote the Cauchy stress, first Piola–Kirchhoff stress, and second
Piola–Kirchhoff stress, respectively, related by

Sab ¼ J�1F a
:APbA ¼ J�1Fa

:ASABFb
:B. (3)

Localized forms of the balances of linear and angular momentum are written as follows
in the reference frame, assuming quasi-static conditions:

PaA
Aj þ Ba ¼ 0; F a

:APbA ¼ PaAFb
:A, (4)

where the vertical bar denotes covariant differentiation and B is the body force vector per
unit reference volume. From Eq. (3) and the second of Eq. (4), we have Sab

¼ S(ab) and
SAB
¼ S (AB), where parentheses indicate symmetrization, i.e., 2AðabÞ ¼ Aab þ Aba for

arbitrary second-rank tensor A. As will be discussed later, neglect of inertia in Eq. (4)
restricts our present approach to time-independent applications at the fine scale (i.e., static
problems). Multiplying the first of Eq. (4) by virtual displacement du and integrating over
reference volume V, we arrive at the following virtual work principle (cf. Marsden and
Hughes, 1983):Z

V

PaBgabðduÞbBj dV ¼

Z
qV

Tagabdub dAþ

Z
V

Bagabdub dV , (5)

with the traction per unit reference area A given by Ta ¼ PaBNB, where NB are covariant
components of the unit normal vector to external boundary qV . Let us assume the
existence of a free-energy potential C per unit reference volume on B0, with the stress
tensor satisfying the following hyperelastic relationships:

SAB ¼ 2
qC
qCAB

¼
qC
qEAB

. (6)

For the particular case of first-order hyperelasticity, Eq. (6) becomes

SAB ¼
q2C

qEABqECD

ECD ¼ CABCDECD, (7)
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where CABCD
¼ CðABÞðCDÞ is the fourth-rank elastic modulus tensor in the reference frame.

Substituting Eq. (6) into Eq. (5) and appealing to Eq. (3), we then haveZ
V

2F a
:A

qC
qCAB

gabðduÞbBj dV ¼

Z
qV

Tagabdub dAþ

Z
V

Bagabdub dV : (8)

2.2. Asymptotic homogenization

Our link between atomistic and continuum resolutions is achieved via the asymptotic
homogenization technique (Chung and Namburu, 2003; Chung, 2004). Let fine and coarse
length scales (i.e., the microscale and macroscale) be spanned by coordinates ya ¼ yaðY A; tÞ
and xa ¼ xaðX A; tÞ, respectively. Notice that in the present scheme, both scales are
parameterized by the same temporal variable t. Multiscale coordinates are related by

xa ¼ eya; X A ¼ eY A, (9)

where e is a small scalar assumed constant throughout the time history of deformation. We
introduce coarse- and fine scale displacements u and v, respectively, restricted below to
coincident Cartesian coordinate systems in the reference and spatial frames:

ua ¼ xa � da
AX A; va ¼ ya � da

:AY A, (10)

with the Cartesian shifter da
:A ¼ 1 for a ¼ A and da

:A ¼ 0 for a 6¼A. Deformation gradients
then follow as

Fa
:A ¼

qua

qX A
þ da

:A; f a
:A ¼

qya

qY A
þ da

:A. (11)

Next we assume an additive decomposition of displacements at the coarse scale (Takano
et al., 2000),

ua ¼ ua þ ~ua ¼ ua þ e~va, (12)

where ua represents the displacement that would exist in a microscopically homogeneous
medium and ~ua is the perturbation in displacement due to fine scale heterogeneity, with
corresponding fine scale representation ~va. The corresponding microscopic decomposition
is

va ¼ e�1ua ¼ va þ ~va ¼ F a
:A � da

:A

� �
Y A þ ~va, (13)

with va the microscopic displacement arising from the projection to the fine scale of the
macroscopic deformation gradient Fa

:A. Differentiating u of Eq. (12) with respect to XA gives

q

qX A
ðua þ e~vaÞ ¼

qua

qX A
þ

q~va

qY A
, (14)

where we have appealed to the second of Eq. (9). From Eq. (11), we then arrive at the
decomposition

Fa
:A ¼

qua

qX A
þ

q~va

qY A
þ da

:A ¼
qua

qX A
dA
:ā þ da

:ā

� �
~F
ā
:A ¼ F

a

:a
~F
a
:A, (15)

where F
a

:a is the deformation gradient under microscopically homogeneous conditions and

~F
ā
:A ¼ F

�1a
:a Fa

:A depends upon the gradient of ~v and thus accounts for heterogeneity due to



ARTICLE IN PRESS
J.D. Clayton, P.W. Chung / J. Mech. Phys. Solids 54 (2006) 1604–16391610
defect fields. Barred Greek indices denote a third configuration B for the material associated
with the multiplicative decomposition in the last of Eq. (15).
Note that the left-hand side of Eq. (8) can be written as follows in Cartesian coordinates:Z

V

2Fa
:A

qC
qCAB

gabðduÞbBj dV ¼

Z
V

qC
qFa

:B

qðduaÞ

qX B
dV , (16)

and that the total displacement variation dua can be expressed, from Eq. (12), as

dua ¼ dua þ ed~va. (17)

Substituting Eqs. (16) and (17) into Eq. (8) givesZ
V

qC
qF a

:B

q

qX B
ðdua þ ed~vaÞ dV

¼

Z
qV

Tagabðdub þ ed~vbÞ dAþ

Z
V

Bagabðdub þ ed~vbÞ dV , ð18Þ

which is then volume-averaged over micro-domain Y to yield

1

Y

Z
Y

Z
V

qC
qFa

:B

qðduaÞ

qX B
þ

qðd~vaÞ

qY B

� �
dV dY

¼
1

Y

Z
Y

Z
qV

Tagabðdub þ ed~vbÞ dA dY þ
1

Y

Z
Y

Z
V

Bagabðdub þ ed~vbÞ dV dY : ð19Þ

Eq. (19) is satisfied in the asymptotic limit e-0 only if the following conditions hold:

1

Y

Z
Y

Z
V

qC
qF a

:B

qðduaÞ

qX B
dV dY ¼

Z
qV

Tagabdub dAþ

Z
V

Bagabdub dV ð8 duaÞ, (20)

1

Y

Z
Y

Z
V

qC
qF a

:B

qðd~vaÞ

qY B
dV dY ¼ 0 ð8d~vaÞ. (21)

Notice that coarse-scale Eq. (20) and fine scale Eq. (21) are coupled through the
constitutive dependency C ¼ CðFðqu=qX; q~v=qYÞÞ.

3. Homogenization under an evolving intermediate frame

3.1. Multiplicative kinematics

Assume now that we are dealing with an elastic–plastic material in the usual continuum
sense wherein the deformation gradient F is decomposed multiplicatively into a lattice part,
FL, and a plastic part, FP (Bilby et al., 1957; Teodosiu, 1969):

F ¼ FLFP; F ¼ F La
a F Pa

:A . (22)

Implicit in Eq. (22) is the existence of intermediate configuration ~B, with FP the tangent
mapping between B0 and ~B, and FL the tangent mapping from ~B to B. The plastic map FP

reflects contributions to the total deformation that leave the lattice unperturbed, such as
the flux of mobile dislocations. The lattice map F

L includes all other kinematic
contributions, including rigid body motion of the lattice, recoverable elastic stretch fields
associated with the applied loads on the body, and residual elastic stretch fields attributed
to microscopic heterogeneity (e.g., defects contained within the local volume element or
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periodic unit cell). Thus ~B is identified with a relaxed natural configuration of finite
plasticity theory (Eckart, 1948).

3.2. Governing equations

In an elastic–plastic body, it is typically assumed that the free energy depends only upon
that part of the deformation that affects the lattice, in other words,

~C ¼ JP�1CðF;FP; ~n; yÞ ¼ ~CðFL; ~n; yÞ, (23)

where ~C is measured per unit intermediate volume on ~B, JP is the Jacobian deter-
minant of F

P, and where we have also included the dependence of the free energy on
absolute temperature y. Additionally, ~n is a vector of internal state variables accounting
for deviations in stored energy from that of a perfect lattice. From Eqs. (22) and (23)
and assuming an instantaneous hyperelastic response, the first Piola–Kirchhoff
stress satisfies

P:A
a ¼

qC
qFa

:A

¼ JP�1 q ~C
qF La

:a

F P�1A
:a . (24)

The balance of linear momentum in Eq. (4) can then be re-written as follows:

gabJP�1FP�1A
:a

q ~C

qF Lb
:a

 !
Aj

þ Ba ¼ 0. (25)

Let us denote the intermediate second Piola–Kirchhoff stress by

~S
ab
¼ gab q ~C

qF Lb
:a

FL�1b
:a ¼ 2

q ~C

q ~Cab
¼

q ~C

q ~Eab
, (26)

where

~Cab ¼ FLa
:a gabFLb

:b ; 2 ~Eab ¼ ~Cab � ~gab, (27)

with ~g the metric tensor on configuration ~B. Note that in Eq. (26), we have made the usual
assumption that the dependency of ~C upon FL can be replaced with a dependency upon ~C
or ~E, in order to satisfy standard frame indifference arguments (cf. Marsden and Hughes,
1983). Analogous to Eq. (7), for the particular case of first-order hyperelasticity, Eq. (26)
becomes

~S
ab
¼

q2 ~C

q ~Eabq ~Ewd

~Ewd ¼ ~C
abwd ~Ewd, (28)

with ~C
abwd
¼ ~C

ðabÞðwdÞ
the fourth-rank elastic modulus referred to ~B. Eq. (5) can then be

written as follows for a hyperelastic–plastic body, upon appealing to Eq. (25)

Z
V

JP�1FP�1A
:a

q ~C
qFLa

:a

ðduÞaAj dV ¼

Z
qV

Tagabdub dAþ

Z
V

Bagabdub dV . (29)
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3.3. Asymptotic homogenization

Expressions (9)–(15) and (17) apply for the elastic–plastic case. Substituting Eq. (17) into
Eq. (29) and using Cartesian coordinates XA, we haveZ

V

JP�1FP�1B
:a

q ~C
qF La

:a

q

qX B
ðdua þ ed~vaÞ dV

¼

Z
qV

Tagabðdub þ ed~vbÞ dAþ

Z
V

Bagabðdub þ ed~vbÞ dV , ð30Þ

leading to the following coupled multiscale equations in the limit as e! 0:

1

Y

Z
Y

Z
V

JP�1FP�1B
:a

q ~C
qFLa

:a

qðduaÞ

qX B
dV dY ¼

Z
qV

Tagabdub dAþ

Z
V

Bagabdub dV ð8 duaÞ,

(31)

1

Y

Z
Y

Z
V

JP�1FP�1B
:a

q ~C
qFLa

:a

qðd~vaÞ

qY B
dV dY ¼ 0 ð8d~vaÞ. (32)

Notice that generally, FL and FP of Eq. (22) and F and ~F of Eq. (15) are four distinct
deformation mappings, with corresponding configurations of the body depicted in
Fig. 2(a). The former two denote lattice and plastic deformations; the latter two represent
micro-homogeneous and micro-heterogeneous deformations, respectively. Under certain
circumstances, however, some of these may reduce to the identity map. Possible scenarios
are summarized below:

Elastoplasticity with defects : F ¼ FLFP ¼ F ~F,

Homogeneous elastoplasticity : F ¼ FLFP ¼ F,

Elasticity with defects : F ¼ FL ¼ F ~F,

Homogeneous elasticity : F ¼ FL ¼ F. ð33Þ

In Eq. (33), ‘‘elastoplasticity with defects’’ is the most general case, for example a
crystalline volume element that has sustained dislocation flux during its deformation
history and also contains dislocations, possibly immobile. By ‘‘homogeneous elastoplas-
ticity’’ we mean a situation in which dislocations may have traversed the volume element,
Fig. 2. Deformation mappings and configurations (a), and purely plastic deformation (b).
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but no defects or commensurate residual stress fields are contained within. By ‘‘elasticity
with defects’’, we refer to the case in which no defects have traversed the element (i.e., null
dislocation flux over the deformation history), but when defects are contained within,
leading to microscopic heterogeneity and internal stress fields. This was the situation
studied by Chung and Namburu (2003) and Chung (2004), where the representation of
point defects was the primary concern. ‘‘Homogeneous elasticity’’ refers to a lattice free of
defects over the entire time history of deformation.

4. Multiscale formulation

Here we present kinematic, thermodynamic, and kinetic assumptions needed to relate
atomistic and continuum fields and incrementally update intermediate configurations ~B
and B.

4.1. Discrete and continuum descriptions of lattice quantities

Assume that in reference configuration B0, the representative volume (i.e., unit cell) for
homogenization consists of atoms arranged in a lattice, perhaps imperfect due to the
presence of defects. Furthermore, assume that in configuration ~B, the same mass and
number of atoms exist in this representative volume, for example upon propagation of
dislocations across the unit cell. Individual atomic positions in B0 and ~B may not coincide,
even though the lattice may look the same to an external observer in each of these two
configurations. The position vector for an arbitrary atom m in evolving configuration ~B is
denoted by ~Zhmi, where angled brackets are reserved for atomic labels, which range from 1
to N. Spatial positions za

hji of atoms in configuration B are then found as follows, in
Cartesian coordinates:

za
hji ¼ da

a
~Z
a
hji þ qa

hji, (34)

with q/jS a displacement vector between intermediate and current states for atom m. Let
~Rhj\ki and rhj\ki denote vectors separating atoms a and b in respective configurations ~B and
B, i.e.,

~Rhj\ki ¼ ~Zhki � ~Zhji, (35)

rhj\ki ¼ zhki � zhji. (36)

Making contact with the homogenization theory of Sections 2 and 3, we next assume

za
hji ¼ F

La

hjkia
~Z
a
hki þ ~v

a
hji, (37)

with summation implied over repeated atomic indices. The first term in Eq. (37), F
La

hjkia
~Z
a
hki,

accounts for the uniform projection over each periodic cell of the macroscopic lattice
deformation field to the fine scale (i.e., the Cauchy–Born approximation), and ~va

hji is the

discrete atomistic analog of the perturbation in displacement due to microscopic
heterogeneity given in previously in Eq. (13), written here for atom m. Notice that ~va

hji

of Eq. (37) is technically the perturbation in displacement from the intermediate state,
whereas ~va of Eq. (13) is a displacement perturbation from the initial reference state.
However, if the plastic deformation mapping FP is assumed to leave the lattice properties
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unaltered, then these displacement perturbations may be considered, for our purposes, to
be equivalent. Spatial separation vectors in Eq. (36) then become

rhj\ki ¼ F
L ~Rhj\ki þ ~vhki � ~vhji ¼ F

L ~Rhj\ki þ ~rhj\ki, (38)

with ~rhj\ki ¼ ~vhki � ~vhji accounting for deviations from the Cauchy–Born rule.

Reference state B0 is related to the intermediate state ~B as follows. The mapping FP

represents the cumulative deformation of the material, but not the lattice, due to
dislocation glide through the unit cell. For a fixed control volume, once atoms have

convected through the lattice due to FP, B0 and ~B appear identical in the fine scale domain
if no dislocations are created or destroyed within the volume element, yet net deformation
of the material will have taken place at the coarse scale. The same concept is used in
classical crystal plasticity theory, e.g. Asaro (1983), wherein the lattice director vectors are
assumed to be unaffected by FP. For a purely plastic process with FL

¼ 1, new atoms
would enter the control volume (i.e., the atomic unit cell) in the identical locations as the
old, to replace those that exited due to plastic flow, and the mass of the system would be
conserved (the volume would also be conserved for processes in which JP

¼ 1). The
concept is illustrated in Fig. 2(b), in which atoms that exit the unit cell are denoted by filled
circles, and those that enter the cell by open circles, with the underlying material
undergoing pure plastic shear. Though not illustrated explicitly here, immobile
dislocations or other stationary defects are admitted within the volume in both
configurations, as the influence of such defects on the stored energy and mechanical
response is of primary interest in the applications that follow.
Henceforth we assume a free-energy potential depending only upon the relative

positions of all atoms (i.e., lattice statics):

~C ¼ ~Cðqhji; ~ZhjiÞ ¼ ~Cðrh1\2i; rh1\3i; rh2\3i; . . . rhN�1\NiÞ. (39)

Analogous to Eq. (39) is the isothermal representation of continuum expression (23):

~C ¼ ~CðFL; ~nÞ, (40)

where ~n accounts for effects on stored energy due to deviations from homogeneous
elasticity at the fine scale. Integrating Eq. (32) by parts and applying the divergence
theorem over volume Y with oriented surface element NA dA, we arrive at

1

A

Z
qY

Z
V

JP�1FP�1B
:a

q ~C
qFLa

:a

d~vaNB dV dA ¼
1

Y

Z
Y

Z
V

q
qY B

JP�1FP�1 B
:a

q ~C
qFLa

:a

� �
d~va dV dY .

(41)

Localizing the volume integral on the right-hand side of Eq. (41) and considering all
admissible variations d~v, the microscopic linear momentum balance becomes

q

qY B
JP�1FP�1 B

:a
q ~C
qFLa

:a

� �
¼

qP:B
a

qY B
¼ 0 ðin Y Þ (42)

as the area integral vanishes since we may choose d~v ¼ 0 on A ¼ qY . Eq. (42) is quite
general in the sense that no assumption is made on the order of the incremental elastic
response; for example, higher-order elastic constants are admitted in the sense of material
nonlinearity. For algorithmic purposes, however, we find it advantageous to assume a
quadratic energy dependency along the lines of Eq. (28), an appropriate assumption for
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most engineering metals undergoing quasi-static deformations. The overall elastic
stress–strain response may still be nonlinear in our formulation, however, as we allow
the tangent elastic stiffness tensor to vary with elastic deformation FL, and the formulation
may also be considered nonlinear in the geometric sense, as finite deformations are
addressed. We thus re-write Eq. (42) as

q

qY B
JP�1F P�1B

:a
q2 ~C

qF La
:a qF Lb

:b

ðF Lb
:b � db

:bÞ

 !
¼

q

qY B
JP�1FP�1B

:a Ĉ
ab
abðF

Lb
:b � db

:bÞ

� �
¼ 0,

(43)

where Ĉ
ab
ab is a mixed-variant effective elastic modulus tensor. Applying our previous

assumptions that FP does not affect the lattice state and acts uniformly over Y, Eq. (43)
becomes

JP�1F P�1B
:a

q

qY B
Ĉ

ab
abðF

b
:A � db

:wF
P w
:A Þ

� �
FP�1A
:b ¼ 0. (44)

Next, from the deformation gradient expression given by the first of Eq. (15), we have

�F P�1B
:a

qĈ
ab
ab

qY B

qub

qX A
þ db

:A � db
:wF

Pw
:A

� �
FP�1A
:b ¼ FP�1B

:a
q

qY B
Ĉ

ab
ab

q~vb

qY A

� �
FP�1A
:b . (45)

Our immediate goal is to express Eq. (45) in terms of atomistic and macroscopic
displacements. Invoking the chain rule gives

q

q ~Z
a
hji

¼
qY A

q ~Z
a
hji

q

qY A
¼ F

P�1A

hjia
q

qY A
, (46)

where the linear operator F
P�1A

hjia measures the change in intermediate atomic position of
atom j with respect to a change in reference coordinates. Using Eq. (46) in the left-hand
side of Eq. (45), we assume

FP�1B
:a

qĈ
ab
ab

qY B

qub

qX A
þ db

:A � db
:wF

Pw
:A

� �
F P�1A
:b !

qĈ
ab
ab

q ~Z
a
hji

qub

qX A
þ db

:A � db
:wF

Pw
:A

� �
F P�1A
:b

¼
q2 ~C

qqa
hjiqFLb

:b

qub

qX A
þ db

:A � db
:wF

Pw
:A

� �
F P�1A
:b ¼ �Db

hjiab

@ub

@X A
þ db

:A � db
:wF

Pw
:A

� �
FP�1A
:b ,
ð47Þ

and for the right-hand side of Eq. (45), rigorous for small atomic perturbations ~va
hmi,

FP�1B
:a

q
qY B

Ĉ
ab
ab

q~vb

qY A

� �
FP�1A
:b !

q

q ~Z
a
hji

Ĉ
ab
ab

q~vb
hki

q ~Z
b
hji

0
@

1
A ¼ q2 ~C

qqa
hkiqqb

hji

~vb
hki ¼Hhjkiab ~v

b
hki.

(48)

In Eqs. (47) and (48), the ‘‘-’’ notation denotes the transformation steps ~vb ! ~vb
hki and

F
P a
hkiAFP�1A

:b ! da:b, the latter implying that F
P�1A

hkia acts uniformly over all atoms k

within each periodic cell. Using Eqs. (47) and (48), the fine scale equilibrium equation (42)
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finally becomes

Db
hjiab

qub

qX A
þ db

:A � db
:wF

Pw
:A

� �
FP�1A
:b ¼Hhjkiab ~v

b
hki, (49)

where Db
hjiab ¼ �q

2 ~C=qqa
hjiqFLb

:b and the Hessian matrix Hhjkiab ¼ q2 ~C=qqa
hkiqqb

hji. In

subsequent calculations, Eq. (49) is solved for the (atomic) inner displacements ~vb
hki.

Notice that for the particular case of an elastic (as opposed to elastic–plastic) material with

defects, we have the conditions F ¼ FL, FP
¼ 1, ~CðFL; ~nÞ ! CðF; ~nÞ, DB

hjiab ¼ �q
2C=qqa

hjiq

Fb
:B, Hhjkiab ¼ q2C=qqa

hjiqqb
hki, and Eq. (49) becomes equivalent to the original proposition

of Chung and Namburu (2003), i.e.,

DA
hjiab

qub

qX A

� �
¼Hhjkiab ~v

b
hki. (50)

Now we reconsider coarse-scale Eq. (31), assuming that ~v is known from solution of
Eq. (49). The left-hand side of Eq. (31) can be written as

1

Y

Z
Y

Z
V

JP�1F P�1B
:a

q ~C
qFLa

:a

qðduaÞ

qX B
dV dY

¼
1

Y

Z
Y

Z
V

JP�1FP�1B
:a Ĉ

ba
ba

qub

qX A
þ

q~vb

qY A
þ db

:A � db
:wF

Pw
:A

� �
FP�1A
:b

qðduaÞ

qX B
dV dY , ð51Þ

where fine scale perturbations and atomic positions affect Fb
:A and Ĉ

ab
ab through Eqs. (15)

and (39), respectively, and hence influence the macroscopic response. Following
Eqs. (46)–(49), we may write

Ĉ
ba
ba

q~vb

qY A
FP�1A
:b ! Ĉ

ba
ba

q~vb
hji

q ~Z
b
hji

¼
q2 ~C

qqb
hjiqFLa

:a

~vb
hji ¼ �D

a
hjiba ~v

b
hji, (52)

such that Eq. (31) becomes

1

Y

Z
Y

Z
V

C
AB

ba

qub

qX A
þ db

:A � db
:wF

Pw
:A

� �
qðduaÞ

qX B
dV dY

¼

Z
qV

Tagabdub dAþ

Z
V

Bagabdub dV þ
1

Y

Z
Y

Z
V

D
B

hjiba ~v
b
hji

qðduaÞ

qX B
dV dY : ð53Þ

where C
AB

ba ¼ JP�1F P�1B
:a Ĉ

ba
baFP�1A

:b and D
B

hjiba ¼ JP�1F P�1B
:a Da

hjiba. Later, Eq. (53) will be

converted to a finite-element equation applied over spatially discretized domain V.
As is clear from relations (47) and (48), the theory effectively equates ~va and ~va

hki, implying
two main assumptions. Firstly, neglecting the change in configurations, the atomic discrete
degrees-of-freedom ~va

hki are assumed to be equivalent to the fine scale continuum analog from
classical two-scale homogenization theory, ~va. This assertion was made in earlier papers by
Chung and co-workers (Chung and Namburu, 2003; Chung, 2004), and was further modified
for efficient computer implementation by the present authors (Chung and Clayton, 2006). It
is a fundamental assumption made without mathematical proof. Physically, it implies that
atomic deviations from the Cauchy–Born rule are equivalent to fine scale perturbations due
to microstructure heterogeneity in the sense of two-scale continuum homogenization.
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Secondly, ~va is a spatial quantity in the two-scale continuum theory representing local
perturbations from the reference state B0, whereas ~v

a
hki is a spatial quantity representing

atomic perturbations from the intermediate configuration ~B. Since FP does not affect the
underlying lattice or the atomic coordinates as discussed above, we assume that the
perturbations from the reference state are the same as those from the intermediate state.

The manipulations in Eq. (47) effectively embed a deformation gradient (i.e., FL) into
the operator Db

hjiab. Hence the rightmost term of the macroscopic equation (53) implicitly
involves gradients of the atomistic variable ~vb

hji. This result follows from the two-scale
mathematical homogenization approach presently used and embodies the features of weak
convergence usually encountered for such methods (Nguetseng, 1989; Allaire, 1992), as
discussed earlier. In practice and in contrast to many existing coupled multiscale
approaches, the characteristic length scales in X (continuum) and Y (atomistic) are not
necessarily identical, and therefore, no length scale-preserving displacement boundary
conditions between the domains are required. Only the correlated inter-scale gradients are
enforced in an average sense over each domain. We also note that Eqs. (49) and (53) are
coupled in terms of solution variables ~v and u.

4.2. Inelastic fields and defect kinetics

Depending upon the fine scale physics representation, additional kinetic equations may
be required in our framework in order to advance the plastic deformation gradient FP and
internal variables ~n. In the continuum description, these are written as

_F
P
¼ _F

P
ðF;FP; ~n; yÞ, (54)

_~n ¼ _~nðF;FP; ~n; yÞ, (55)

assuming that instantaneous rates depend upon the thermodynamic state described by the
first of Eq. (23). When a finite-temperature atomistic description is invoked at the fine
scale, Eq. (54) may not be needed a priori, as the plastic velocity gradient can conceivably
be expressed in terms of the flux of mobile dislocations. One can formulate an approximate

expression for the rate of the mapping _F
P
in terms of the dislocation velocity, line length,

and orientation (Teodosiu, 1969). A similar approach has been used by Zbib and co-
workers in the context of discrete dislocation plasticity (Zbib and de la Rubia, 2002).

Conceivably, our approach could be modified such that _F
P
could be extracted in such a

manner directly from the atomistics, though it is a nontrivial task to precisely define the
location of the dislocation line in the atomistic domain, and our method would need to be
extended to account for dynamics in order to track the dislocation velocity, as no time
scale enters the present static formulation. One cannot construct an explicit formula for the
tangent map FP itself unless the dislocation geometry and velocity are constant over
the time history of deformation. In the present implementation, Eq. (54) is needed as the
physics of thermally activated dislocation glide are not adequately addressed by our static
calculations at the fine scale. Relation (55) controls, for example, rates of defect generation
or annihilation, in instances when such kinetics are not modeled directly at the fine scale, as
is again the case in the present zero-temperature atomistic implementation. Simple,
yet specific, forms of Eqs. (54) and (55) follow in the discussion of numerical results in
Section 6.3.
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5. Numerical implementation

As the material response is nonlinear in the presence of defects, an iterative scheme is
employed for application of our computational method to deforming crystals. The initial-
boundary value problem consists of the macroscopic domain V, discretized here into
standard finite elements. The integration point of each element in turn represents a
microscopic unit cell of volume Y, consisting of N atoms subjected to periodic fine scale
boundary conditions. Defects such as dislocations may be present in the initial
configuration, at t ¼ 0, accompanying the standard assumption FP

t¼0 ¼ 1. Details of the
iterative algorithm are listed below. In what follows, we denote by Dt the time increment
over which a numerical integration cycle takes place, and Du and D~v denote increments in
macro- and micro-displacement vectors over Dt.
1.
 Incrementally increase the applied load.
(a) Begin element loop, for each element level integration point:

(i) Update the coarse-scale deformation gradient F.
(ii) Compute the lattice deformation gradient FL ¼ FFP�1, where at the coarse

scale, F and F are assumed effectively equivalent.
(iii) Update atomic positions via Eq. (37), with ~v ¼ 0 initially and

F
La

hjkia ¼ FLa
:a dhjki.

(iv) Calculate the Hessian Hhjkiab ¼ q2 ~C=qqa
hkiqqb

hji and Dhjiab ¼ q2 ~C=qqa
hjiqFLb

:b

from the atomistic potential energy ~E (for example, see later Eqs. (70)–(71)).
(v) Apply periodic boundary conditions and solve fine scale Eq. (49) for D~v:

Db
hjiab

qðDubÞ

qX A
þ db

:A � db
:wF

Pw
:A

� �
F P�1A
:b ¼HhjkiabðD~vb

kh iÞ, (56)

where Du is known at present following the update of F of step (i) above.
(vi) Repeat steps (iii), (iv), and (v) above until D~v! 0 on successive counts.

(vii) Compute Ĉ
ab
ab ¼ q2 ~C=qFLa

:a qFLb
:b from the atomic energy ~E (see later

Eq. (72)).
(viii) Calculate the effective elastic stiffness C

AB

ba ¼ JP�1F P�1B
:a Ĉ

ba
baFP�1A

:b and the
quantity D

B

hjiba ¼ JP�1FP�1B
:a Da

hjiba.
(b) Compute and assemble the finite element equations. In discretized incremental

form, the left-hand side of (53) becomes

1

Y

Z
Y

Z
V

C
AB

ba

qDub

qX A
þ db

:A � db
:wF

Pw
:A

� �
qðDuaÞ

qX B
dV dY

!

Z
V

C
AB

ba

q

qX A
Nb

cDuc
� �

þ db
:A � db

:wF
Pw
:A

� �
q

qX B
ðNa

dDudÞ dV ; ð57Þ

where N is the element shape function and D u is the nodal displacement
increment. Similarly, the right-hand side of (53) can be writtenZ

qV

DTagabDub dAþ

Z
V

DBagabDub dV þ
1

Y

Z
Y

Z
V

D
B

hjiba ~v
b
hji

qðDuaÞ

qX B
dV dY

!

Z
DTagabNb

cDuc dAþ

Z
DBagabNb

cDuc dV

qV V
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þ

Z
V

D
B

hjiba ~v
b
hji

q

qX B
ðNa

cDucÞ dV . ð58Þ

Combining (57) and (58) then gives

Duc

Z
V

qðNb
cÞ

qX A
C

AB

ba

qðNa
dÞ

qX B
dV

� �
Dud

¼ Duc

Z
@V

DTagabNb
c dAþ Duc

Z
V

DBagabNb
c dV

þ Duc

Z
V

D
B

hjiba ~v
b
hji þ C

AB

ba ðd
b
:A � db

:wF
Pw
:A Þ

h i qðNa
cÞ

qX B
dV ; ð59Þ

which can be reduced upon taking the first variation to the finite element equation

KcdDud ¼ Tc þ Bc þDc. (60)

Solution of Eq. (60) involves
(i) Compute Kcd ¼

P
e

R
V
½qðNb

cÞ=qX A�C
AB

ba ½qðN
a
dÞ=qX B� dV , where summation

runs over e finite elements of volume V .
(ii) Compute T c ¼

P
e

R
@V

DTagabNb
c dA, with A the external surface area of

element e, with DTa the incremental traction vector.
(iii) Compute B c ¼

P
e

R
V
DBagabNb

c dV , with DBa the incremental body force
vector.

(iv) Compute Dc ¼
P

e

R
V
½D

B

hjiba ~v
b
hji þ C

AB

ba ðd
b
:A � db

:wF
Pw
:A Þ�½qðN

a
cÞ=qX B� dV , with ~v

and C
AB

ba both found from step 1(a).

(v) Invert Eq. (60) and solve for Dud , i.e.

D u ¼ K�1 TþBþDð Þ. (61)

(c) Iterate to step 1(a) until Dunþ1 � Dun ! 0, where n and n+1 denote iterations.

2.
 Update the total nodal displacement field utþDt ¼ ut þ D u.
3.
 Project forward the intermediate configuration (FP and defect arrangement ~n) for the next
increment at each element integration point (i.e. unit cell), based on the current local state.
4.
 Return to step 1 until final load is achieved.

No problems are introduced in our approach due to the fact that the field FP is
incompatible, i.e., that ðF PÞ

a
:A;BaðF

PÞ
a
:B;A, in general. In continuum crystal plasticity theories,
the mapping FP is generally not required to be compatible, and in fact, the skew-symmetric
gradient of FP measuring its nonintegrability is often associated with geometrically necessary
dislocation density tensor (Gurtin, 2002). In the unit cell calculations presented here, FP is
imposed uniformly over each cell, and FL includes the effects of the fine scale perturbation ~v,
except in the first iteration of the numerical procedure described above, where the Born
assumption is used as the initial guess for updating the atomic coordinates. We only consider
isolated unit cells in the applications that follow, but the theory invokes no restrictions on
how FP or its gradients can vary from cell to neighboring cell on the coarse scale.

6. Application: defects in tungsten

In the present work our formulation is applied to study the mechanical behavior of pure
tungsten (W), a BCC transition metal of relatively high mass density. Its combination of
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high density and strength make it an attractive material for use in defense applications
such as ordnance (Zhou and Clifton, 1997; Clayton, 2005). The potential energy function
describing atomistic interactions in W is discussed in Section 6.1. Numerical results for
illustrative boundary value problems then follow. In Section 6.2, these describe the
nonlinear elastic response of a deforming W crystal containing (i) vacancies, (ii) screw
dislocations of like sign and screw dislocation dipoles, and (iii) low-angle twist boundaries.
Then in Section 6.3 we address the energetic and stiffness properties of a plastically
deforming single crystal containing screw dislocations.
6.1. Atomistic potential: tungsten

We employ an empirical N-body potential specifically developed for transition metals
(Finnis and Sinclair, 1984) in order to estimate the free-energy potential ~C of Eq. (39).
Duesberry and Vitek (1998) exercised the Finnis–Sinclair potential to model screw
dislocation core structures, construct generalized stacking fault energy surfaces, and
predict plastic slip anisotropy (i.e. tension–compression asymmetry in the yield function) in
multiple BCC transition metals, including W. Liu et al. (2004) used the Finnis–Sinclair
potential for studying edge dislocation glide in W and molybdenum, and Tian and Woo
(2004) invoked a variation of this potential (Ackland and Thetford, 1987) to simulate
screw dislocation motion in W. Please note that while the choice of atomistic potential is
extremely important in order to ensure the appropriate physics are captured, our primary
interest in the present research effort is development of the multiscale homogenization
technique, which may be exercised using any available potential energy function of form
(39), or more generally, for any crystalline material for which atomic energy, force, and
stiffness are known (e.g., in terms of tabulated values obtained from more refined
electronic structure calculations). The particular potential used here (Finnis and Sinclair,
1984) was selected because of its apparently adequate capability for describing dislocation
energetics in W, as reported in the above-mentioned papers. The total potential energy ~E
of a set of atoms at positions fzhjig, for j ¼ 1; 2; :::;N is given by the sum

~E ¼ ~EN þ ~EP (62)

where ~EN is the N-body term that is a function of the superposition of the local electronic
charge density r, the latter obtained from a further superposition of atomic charge
densities, f. Also in Eq. (62), ~EP is a pair potential that models core–core interactions. The
N-body term is constructed as

~EN ¼ �L
X
hji

f ð ~rhjiÞ, (63)

where

f ð ~rhjiÞ ¼
ffiffiffiffiffiffiffi
~rhji

q
; ~rhji ¼

X
k

~fðrhj\kiÞ (64)

is always non-negative and real,

rhj\ki ¼ jrhj\kij ¼ jzhki � zhjij, (65)
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~fðrÞ ¼
ðr� dÞ2; rpd;

0; r4d;

(
(66)

and L is an empirical constant. The adjustable parameter d represents a cut-off zone for
superposition of local charge densities. For BCC tungsten with lattice parameter a, the
value of d is chosen to lie between the second- and third-nearest neighbors, i.e. aodoa

ffiffiffi
2
p

,
for computational convenience. The pair potential ~EP is formed as

~EP ¼
1

2

X
j;k; jak

~cðrhj\kiÞ (67)

where ~c is of the polynomial form

~cðrÞ ¼
ðr� cÞ2ðc0 þ c1rþ c2r2Þ; rpc;

0; r4c;

(
(68)

with empirical constants c0, c1, and c2. The parameter c, also adjustable, is presently
assigned a value between the second- and third-nearest-neighbor distances. Finnis and
Sinclair (1984) obtained the other constants via calibration to experimental data on
macroscopic elastic properties; Tables 1 and 2 list the experimental and fitted parameters,
respectively.

Notice that ~E is the total energy ofN atoms in the fine scale unit cell. The Helmholtz free
energy density in a continuum sense, ~C, is related to ~E as

~C ¼ ~U � ~Zy ¼
1

N
~E, (69)

where ~U is the continuum internal energy, ~Z is the continuum entropy per unit volume, and
y is the absolute thermodynamic temperature of the system, which we assume is zero in the
Table 1

Experimental lattice quantities for W

A Lattice parameter (Å) 3.1652

Uc Cohesive energy (eV) �8.90

C11 Elastic constant (GPa) 522.4

C12 Elastic constant (GPa) 204.4

C44 Rhombohedral shear modulus (GPa) 160.6

C0 Tetragonal shear modulus (GPa) 159.0

B Bulk modulus (GPa) 310.4

Pc Cauchy pressure ¼ 1
2
ðC12 � C44Þ 21.9

Table 2

Constants for EAM potential (W)

d (Å) 4.40024

L (eV) 1.896373

c (Å) 3.25

c0 47.1346499

c1 �33.7665655

c2 6.2541999
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last of Eq. (69) for the present case of molecular statics simulations, such that N ~U ¼ ~E.
Substitution of Eq. (69) into earlier definitions then gives

Hhjkiab ¼
q2 ~C

qqa
hkiqqb

hji

¼
1

N

q2ð ~EN þ ~EPÞ

qqa
hkiqqb

hji

" #
, (70)

Db
hjiab ¼ �

q2 ~C

qqa
hjiqFLb

:b

¼ �
1

N

q2ð ~EN þ ~EPÞ

qqa
hjiqqc

hki

qqc
kh i

qFLb
:b

, (71)

Ĉ
ab
ab ¼

q2 ~C

qFLa
:a qFLb

:b

¼
1

N

q2ð ~EN þ ~EPÞ

qqc
hjiqqd

hki

qqc
hji

qFLa
:a

qqd
hki

qF Lb
:b

, (72)

where from relations (34)–(38) with F
La

hjkia ¼ F La
:a dhjki, to first order,

qrc
hj\ki

qFLa
:a

¼ ~R
a
hj\kid

c
:a;

qqb
hji

qF La
:a

¼ ~Z
a
hjid

b
:a. (73)

Derivatives of ~E with respect to atomic displacements qa
hji are listed by Finnis and

Sinclair (1984) and are not repeated here. In our numerical implementation, expressions
(70)–(73) are evaluated analytically and subsequently used in Eqs. (56) and (60).

6.2. Multiscale nonlinear elasticity with defects

Here we report results of simulations of unit cells containing various numbers of atoms
configured to represent several classes of crystal defects. Essentially, we perform
calculations in which the tangent stiffness of a single Lagrangian finite element integration
point is determined by the microscopic (i.e., atomistic) response. A sample atomistic unit
cell representative of all calculations described in the present work is illustrated in Fig. 3.
The BCC unit cell is a rectangle of dimensions L1 � L2 � L3 ¼ a

ffiffiffi
3
p

N1 � a
ffiffiffi
6
p

N2� a
ffiffiffi
2
p

N3,
where N1, N2, and N3 are respectively the number of repeating planes stacked in the [1 1 1]-,
½1 1 2�-, and ½1 1 0�-directions. Periodic boundary conditions are applied along all faces of
the unit cell in the usual manner (cf. Vitek, 1976), such that atoms exiting the unit cell
during the calculation are mapped back into the cell on the opposite face, thereby
preserving the total mass of the system.
In the present section (6.2), we examine the response of W containing defects under

the conditions of null dislocation flux, i.e. the local deformation gradient F ¼ FL ¼ F ~F in
the context of Eq. (33) and Fig. 2. Our goal here is to examine aspects of material
behavior that could be used subsequently in stand-alone continuum theories, in particular
details associated with stored energy of defect fields and the effects of applied defor-
mations on elasticity and stored energy, for various fixed defect concentrations. Please
recall that our approach is presently restricted to static calculations, i.e., y ¼ 0 K,
as we have yet to develop kinetics relations and scaling laws for finite temperature
response. Nonetheless, one may still draw conclusions, at least in a qualitative sense,
regarding stress and energetics associated with dislocation behavior in BCC metals
in the context of lattice statics calculations (Vitek, 1976; Duesberry and Vitek, 1998). A
standard trend in the literature has been development of such scaling methods for the
purely mechanical problem before extending to the finite temperature regime (Dupuy et al.,
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Fig. 3. Atomistic scale unit cell for perfect BCC lattice.
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2005). Milstein and co-workers (Milstein and Chantasiriwan, 1998; Milstein et al.,
2004) have analyzed the response of a number of metallic crystalline elements using
molecular mechanics techniques (including lattice statics with the embedded
atom method); nonlinear elastic moduli, void formation, and elastic instabilities
were studied in these works, though periodic initial defect distributions and dislocations
were not.

In the present set of calculations, initial atomic coordinates are found using a two-step
procedure: first the linear-elastic solution for displacement field of the defect is applied to
the atoms, then a conjugate gradient algorithm (Plimpton and Hendrickson, 1993) is used
to transition the atomic positions to a stable local minimum energy state. Subsequently,
the response to applied deformation is computed using our asymptotic homogenization
scheme according to the numerical procedure described in Section 5. The applied (i.e.,
coarse-scale) deformation gradient field (in conjunction with fine scale periodicity) is
uniaxial stretching in the [1 1 1]-direction (see Fig. 3) over a range of 1:000pF11p1:025,
with the lateral edges fixed (covariant Cartesian notation is used here and in subsequent
figures for simplicity, i.e. F

1

:1! F11). We also compare the final configurations attained
using our procedure with that of incremental energy minimization. In the latter approach,
a small increment in the stretch field is first imposed uniformly over all atoms, and then a
conjugate gradient program is used to update the atomic coordinates to the corresponding
local minimum energy state. This process continues with a new set of conjugate gradient
minimization iterations conducted upon application of each successive stretch increment
until the final, fully deformed configuration is attained.

First we consider a point vacancy, as shown in Fig. 4(a). The initial configuration is
constructed simply by removing the atom closest to the centroid of the unit cell. The defect
density in this case is defined as the volume fraction of missing atoms, i.e., rd ¼ 1=N,
where N is the total number of atoms prior to vacancy creation, ranging from 2016 to
32 256 among the simulations discussed here. Defect energy is shown in Fig. 4(b), defined
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Fig. 4. Vacancy configuration (a), strain energy comparison between computational methods (b), defect energy

(c), elastic stiffness (d), and Zener anisotropy (e).
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on a per-atom basis as

Ed ¼
~E � E

N
, (74)

where ~E is the total potential energy of the system and E is the total potential energy of a
perfect BCC W lattice of the same dimensions and same number of atoms (prior to
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vacancy formation), subjected to the same deformation boundary conditions. From
Fig. 4(b), we see that our homogenization approach is validated in the sense that it predicts
minimum energy atomic configurations that compare favorably with those obtained using
incremental conjugate gradient minimization. In Fig. 4(c), the total defect energy NEd is
shown. Schultz (1991) reported an experimental value of 3.6 eV for vacancy formation
energy in W at null applied strain. Notice that the defect energy increases with applied
stretch F 11. Shown in Fig. 4(d) is the elastic modulus component C1111 ¼ Ĉ

11

11, computed
via Eq. (72). Values decrease drastically with applied stretch, to around 80% of their
original magnitudes at F 11 ¼ 1:025. In contrast, the defect density has little effect on C1111,
though this could be expected at such dilute vacancy concentrations as are considered here
(i.e., porosities less than 0.1%). Fig. 4(c) shows the Zener anisotropy factor A, defined by
(cf. Hirth and Lothe, 1982)

A ¼
2C1212

C1111 � C1122
¼

2Ĉ
22

11

Ĉ
11

11 � Ĉ
12

12

, (75)

where the Cartesian contravariant notation is used in Fig. 4(c) and in the expression
following the first equality in Eq. (75). Note that defect-free W is nominally isotropic at
null deformation, i.e., A ¼ 1.00, and that the anisotropy increases dramatically as the
lattice is stretched. This result may in part be due to a limitation in the Finnis and Sinclair
(1984) potential, whose parameters are calibrated to small-strain elastic moduli, although
first-principles (i.e., quantum-mechanical) calculations have indicated a departure from
isotropy in W at large pressures (Ruoff et al., 1998).

Regarding the vacancy concentrations considered here (rd on the order of 10�4), we note
that such high concentrations would be unlikely to exist in commercially melt-grown pure
single crystals, and that for very dilute concentrations (on the order of parts per million),
the effects on the energetic and mechanical properties would apparently be quite small.
However, for tungsten crystals and alloys generated from powder consolidation/
compaction and sintering processes, even higher porosities on the order of several percent
are not uncommon (cf. Yih and Wang, 1979). In such cases, the effects on properties would
be substantial, perhaps orders of magnitude more so than the results listed here in Fig. 4.
Such highly porous tungsten is used, for example, in electrical applications (Selcuk and
Wood, 2005), where cyclic fatigue is of concern.

The response of W containing a periodic array of screw dislocations is investigated next.
The defect configuration is illustrated in Fig. 5(a). The dislocation tangent line and burgers
vector b are oriented along the [1 1 1]-direction and pass through the centroid of the unit
cell, the latter having a magnitude of b ¼ jbj ¼

ffiffiffi
3
p

a=2. Initial atomic positions are
prescribed via the usual displacement field solution for a screw dislocation embedded in an
infinite isotropic elastic body, i.e. u ¼ bŷ=2p, where ŷ is an angular coordinate about the
axis of the dislocation line. The scalar dislocation density is defined as the defect line length
per unit reference volume, i.e., rd ¼ 1=ðL2L3Þ. The defect energy per atom, defined as in
Eq. (74) and shown in Fig. 5(b), is computed accurately by our homogenization scheme as
is verified by the incremental conjugate gradient solutions. Furthermore, we see a linear
increase in stored defect energy with applied deformation F11, and a roughly linear increase
in Ed with increasing dislocation density rd. Gibeling and Nix (1980) discussed, from the
standpoint of discrete dislocation modeling, how the strain energy supported by
dislocations may be amplified by applied external deformations, and Clayton (2005)
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Fig. 5. Screw dislocation configuration (a), strain energy comparison between computational methods (b), defect

energy (c), elastic stiffness (d), and Zener anisotropy (e).
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assumed a linear dependence of stored elastic energy on dislocation density in a continuum
crystal plasticity model of single crystalline W. Note that we are not attempting to compute
isolated dislocation energies as has been the goal of previous studies (cf. Cai et al., 2003).
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Instead, here we wish to include the effects of neighboring defects, thereby representing a
distribution of lattice imperfections as would occur in a plastically deforming sample of
material. Note also that a distribution of identically oriented dislocations produces a net
(geometrically necessary) dislocation density tensor in the sense of Nye (1953), implying
curvature in the lattice (see also Ashby, 1970). From Figs. 5(d) and (e), we see that the
dislocation density tends to accelerate the decrement in stiffness value C1111 with increasing
applied stretch, whereas the anisotropy A tends to be suppressed by increasing dislocation
content as the stretch increases. In particular, at null applied strain, C1111 decreases from
514 to 500GPa as the defect density is increased from 0 to 0.026/nm2. At an applied stretch
of F11 ¼ 1.025, C1111 decreases from 414 to 395GPa over this same range of rd. Although
the trend of decreasing elastic modulus with dislocation content has been reported
elsewhere in the literature following physical experiments (Smith, 1953) and analytical
continuum modeling (Lebedev, 1996), it has not been emphasized previously in continuum
plasticity models. It is also noted that the maximum elastic deformation attained in these
simulations, i.e., 2.5% stretch, is larger than would be expected in real crystals containing
mobile defects wherein yielding and plastic flow would occur more readily. Atomic
motions are constrained here due to the null temperature prescription and uniaxial strain
boundary conditions, though our results are consistent with those of other researchers
under similar constraints (cf. Vitek, 1976).

Results for a unit cell containing a screw dislocation dipole are presented now. The
defect configuration is shown in Fig. 6(a). The dislocation tangent lines are oriented along
the [1 1 1]-direction. The first dislocation of the pair is located at (1/4L2, 1/4L3), and the
second is located at (3/4L2, 3/4L3), thus maintaining a minimum separation distance of
(1/2L2, 1/2L3) between the dislocations located within the cell as well as between image
dislocations implied by the periodic boundaries. The atomic displacements are initially
prescribed as a superposition of the isotropic linear-elastic displacement field solutions of
the two defects, with the burgers vector of the first dislocation oriented positively in the
[1 1 1]-direction and that of the second oriented negatively in the [1 1 1]-direction. In this
case, the dislocation density rd ¼ 2=ðL2L3Þ, and the net Nye (1953) tensor vanishes, as the
burgers vectors cancel out, meaning the dislocation density is ‘‘statistically stored’’ in the
sense of Ashby (1970). The defect energy computed with our homogenization scheme is
plotted in Fig. 6(b); again, the numerical results are validated by conjugate gradient
molecular statics simulations. From Fig. 6(c), we see that the defect energy per atom Ed

increases roughly linearly with the dislocation density, rd, and it increases linearly with
applied stretch F11. The ratio of defect energy to dislocation density is naturally smaller for
the dislocation dipole than for the single screw dislocation (Fig. 5), as the local stress fields
of the dislocations comprising the dipole counteract to a certain degree. For example, at
F11 ¼ 1.025, for a single dislocation, Ed

¼ 0.0254 eV/atom at rd ¼ 0.026/nm2, whereas for
a dipole, the energy is only Ed

¼ 0.0214 eV/atom at twice the density rd ¼ 0.052/nm2. As
shown in Fig. 6(d), the stiffness coefficient C1111 decreases with increasing defect density
and increasing stretch. Anisotropy A (Fig. 6(d)) increases with stretch and increases with
dislocation content at low values of rd ðX0:013=nm2Þ, but decreases as rd is increased
further.

The final defect configuration examined here is a low angle twist grain boundary. In
Fig. 7(a), we describe this boundary type using the disclination concept (Li, 1972; Clayton
et al., 2006). Considered here are twist disclinations, the rotational analogs of screw
dislocations. The defect engenders a misorientation across the (1 1 0)-plane of strength
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Fig. 6. Screw dislocation dipole configuration (a), strain energy comparison between computational methods (b),

defect energy (c), elastic stiffness (d), and Zener anisotropy (e).
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o ¼ 0.2 rad, the value of which was chosen for convenience such that a stable local
minimum energy configuration could be found for the initial atomic arrangement. In the
disclination description, the Frank vector is oriented parallel to the ½1 1 0�-direction, the
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Fig. 7. Twist disclination configuration (a), strain energy comparison between computational methods (b), defect

energy (c), elastic stiffness (d), and Zener anisotropy (e).
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disclination line i is oriented along the [1 1 1]-direction, and the axis of twist passes through
the centroid of the unit cell. The disclination line density is simply rd ¼ 1=ðL2L3Þ. In our
simulations, the atoms are initially displaced according to the elastic solution (Fig. 7(a)),
then subjected to an initial energy minimization via a conjugate gradient solver. As the



ARTICLE IN PRESS
J.D. Clayton, P.W. Chung / J. Mech. Phys. Solids 54 (2006) 1604–16391630
deformation proceeds, the atomic coordinates are updated via the homogenization scheme
whose algorithm is outlined in Section 5. The defect energy results are again validated
via comparison with an incremental conjugate gradient solution in Fig. 7(b). We see in
Fig. 7(c) that the defect energy per atom Ed increases nonlinearly with disclination line
density; in other words, it increases nonlinearly with grain boundary area per unit volume.
Note that we are essentially simulating a periodic array of such low-angle grain
boundaries, as have been known to appear in pure W subjected to severe plastic
deformation (Valiev et al., 2002; Wei et al., 2005, 2006). In contrast to the other classes of
defects examined in the present work, the defect energy decreases with applied stretch, and
the stiffness component C1111 increases with increasing defect density. From Fig. 7(d), at
null applied strain, C1111 increases from 514 to 520GPa as the defect density rd is increased
from 0 to 0.026/nm2. At an applied stretch of F11 ¼ 1.025, C1111 increases over the same
range of rd from 414 to 419GPa. Anisotropy, shown in Fig. 7(e), is suppressed slightly
with increasing disclination content.

6.3. Multiscale elastoplasticity

Next we model the response of screw dislocations in the context of elastoplasticity. The
full decomposition F ¼ FLFP ¼ F ~F of Eq. (33) and Fig. 2 applies. Initial conditions for the
unit cell are identical to those of Fig. 5(a): a single screw dislocation is oriented in the
[1 1 1]-direction, the atoms are initially displaced according to the isotropic elastic solution
for the displacement field of a screw dislocation, and then subjected to conjugate gradient
minimization at null applied macroscopic strain. Again, the dislocation line density is
found as rd ¼ 1=ðL2L3Þ. Here we apply pure shear deformation in the 1–3 plane, over the
range 0:00pF 13p0:10. Periodic boundary conditions are again invoked across all faces of
the unit cell in the atomistic domain. For the case of pure shear in the 1–3 plane, the
multiplicative decomposition F ¼ FLFP yields

F 13 ¼ g ¼ gL þ gP, (76)

where gL is the lattice shear associated with the external stress and gP is the cumulative
plastic slip, assumed in our idealized problem here to occur as a result of dislocation glide
on (1 1 0)-planes. Plastic slip is assumed to follow the simple kinetic relation

gP ¼

0 ð8gpgy
0Þ;

g� gy
0 �

gy

1

2
f1þ sin½ð2p=abÞðg� gy

0 � ab=4Þ�g ð8gXgy
0Þ;

8<
: (77)

where gy
0 is the initial yield strain, gy

1 is an additional lattice strain required to overcome the
Peierls barrier, and a ¼ 1=L3 scales the amount of shear strain accumulated in the unit cell
due to the slip of a dislocation over the distance of one burgers vector. As will be shown
later, Eq. (77) results in a shear stress–shear strain relationship that oscillates in a
sinusoidal manner, in accordance with the Peierls model of periodic lattice resistance stress
discussed by Hirth and Lothe (1982). No rate dependence is included in Eq. (77), which is
restricted to monotonic shear. We regard Eq. (77) as a minimal substitute for dislocation
kinetics, which are not accounted for explicitly in our present multiscale scheme, the latter
limited to 0K calculations at the atomic scale. However, such an approximation is deemed
adequate to study strain energy and associated defect properties in presence of plastic
deformation, and not plasticity kinetics itself which may require molecular dynamics at the
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fine scale in our framework. The simulations discussed here assume that the primary
dislocation remains fixed in the unit cell (in the atomistic domain), and that no defect
generation or annihilation occurs, as other screw dislocations convect through the lattice
and cause an increase in plastic shear gP. In other words, time differentiation of Eq. (77)
produces the evolution equation for the plastic deformation gradient FP (54) and
corresponding intermediate configuration update (Fig. 2), and _rd ¼ 0 may be regarded as
part of the general set of evolution equations (55). Here, following the molecular statics
calculations of Vitek (1976), we choose gy

0 ¼ 0:020 and gy
1 ¼ 0:009, the former a shear strain

required to cause [1 1 1]ð1 1 0Þ-screw dislocation core shuffling in BCC W, the latter
following his result that a total shear strain of 0.029 is required to sustain steady
dislocation glide.

The 1–3 shear component of the first Piola–Kirchhoff stress, P13, is shown in Fig. 8(a),
where components of the stress tensor P are computed from Eq. (24) and (69) as

P:A
a ¼ JP�1 q ~C

qF La
a

FP�1A
:a ¼ JP�1 1

N

qð ~EN þ ~EPÞ

qqb
hji

qqb
hji

qFLa
a

F P�1A
:a . (78)

Prior to initial yield, slight differences in slope of the stress–strain response are evident
among the three curves, with each curve corresponding to a different dislocation density rd.
F13
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Fig. 8. Results from elastic–plastic homogenization simulations: shear stress (a), elastic shear stiffness (b), and

total relative elastic energy (c).
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Such differences are due in part to the decrease in effective elastic shear modulus, C1313 ¼

Ĉ
11

33 , with increasing defect density, as is seen in Fig. 8(b). Upon initial yield, the stress–strain

curves follow Peierls-type oscillations (a direct result of imposition of Eq. (77)), with each
period corresponding to the passage of a single [1 1 1]-screw dislocation across the unit cell,

gliding on a (1 1 0)-plane. As the dislocation density rd is inversely related to the dimension
L3 of the unit cell in our calculations, the larger the dislocation density, the smaller the unit

cell size, the larger increment in shear strain gP associated with the passage of each
dislocation, and the longer the period of shear stress oscillations in Fig. 8(a). In the absence
of such oscillations, the material behavior would be virtually elastic-perfectly plastic. The

total energy per atom, Et ¼ ~E=N�U c, is shown in Fig. 8(c), where the cohesive energy
U c ¼ �8:90eV=atom (Table 1) has been subtracted such that a defect-free, undeformed

lattice would have null energy Et. At zero applied shear, differences among energy curves are
due purely to differences in defect concentration, while the energy oscillations at larger shear

deformations, F1340:020, are associated with the lattice deformation (FL) appearing in
conjunction with the applied stress.

7. Discussion

We discuss here the relevance and potential utility of our numerical results, specifically
the properties computed and presented above for tungsten crystals with defects. We then
review the advantages and differences of our method in comparison to existing multiscale
approaches.
The fundamental results we have presented here describe the thermodynamic free energy

and its second derivative (i.e., elastic stiffness) of unit cells of BCC tungsten containing
various point, line, and area defects. In contrast, in the continuum plasticity literature, the
primary area of research has historically been the plastic flow rule and associated
quantities (e.g., yield surface, strain hardening parameters, and internal variables linked to
these), as the flow rule dominates the stress–strain response when the elastic strains are
small, as is usually the case for engineering metals undergoing even finite quasi-static
deformations. Our method has not been applied towards determination of plastic kinetic
relationships and parameters such as these. Nonetheless, the residual energy of defects that
we study is directly related to the stored energy of cold working and the fraction of stress
power converted to heat energy, an important aspect of continuum plasticity modeling (see
e.g. Rosakis et al., 2000). Fundamental relationships between stored energy of cold work
and microstructure properties such as dislocation content are not readily available in the
existing literature for most materials, and our method and results offer a way to deduce
such relationships. Furthermore, in strain gradient-type crystal plasticity models (see e.g.,
Gurtin, 2002; Clayton et al., 2006), derivatives of the free energy with respect to the
(geometrically necessary) dislocation density (i.e., thermodynamic conjugate forces) are
assumed to give rise to internal stresses and in some instances, directional strain hardening
with a size or length scale dependence. Our technique is conceptually able to compute the
energy that would give rise to such an effect, though we do not explicitly compute such
conjugate forces here in the context of idealized, perfectly periodic defect configurations.
The dislocation densities simulated here are large (e.g., on the order of 1016/m2) in

comparison to contents found in homogeneously deforming single crystals. For example,
Argon and Maloof (1966) report values of rd on the order of 1012/m2 for pure tungsten
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single crystals deformed up to 5% axial tensile strain. Our simulated values correspond to
dislocation spacings on the order of 10nm. However, we argue that in highly strained
regions of crystal, such as in the vicinity of grain or subgrain boundaries formed during
severe plastic deformation (SPD), such dislocation spacings are not unreasonable. For
example, if one considers a boundary comprised of sequence of dislocations of spacing h and
Burgers vector b, the misorientation at the boundary can be computed as b/h (cf. Hughes
et al., 2003), on the order of 41 for 10nm-spaced dislocations in tungsten. Misorientations of
such magnitude have been observed and documented for subgrain boundaries produced in
tungsten crystals deformed through SPD processes (Valiev et al., 2002; Wei et al., 2006).
Furthermore, strain gradient theories as mentioned above are designed to address such
phenomena, so results presented here may be applied to motivate continuum energy
dependencies, at least in a qualitative sense, upon defect densities that serve an important
role in such theories. Stored energy of cold working relative to heat dissipation may also
influence shear localization processes in ultra-fine grained tungsten (Wei et al., 2005, 2006),
which can exhibit dislocation densities of the magnitude studied here.

Our theory has no limitations with regards to defect density, and conceptually permits
the consideration of infinitely lower defect densities by increasing the number of atoms in
the unit cell. However, computational expense associated with the present numerical
implementation prevents us from considering problem sizes on the order of tens of millions
of atoms, as would be needed to reach very low defect densities typically observed in
commercially pure melt-grown single crystalline tungsten (Argon and Maloof, 1966). It
should be noted that size limitations do exist for alternative techniques such as molecular
mechanics, though these more mature methods have benefited from decades of research on
(parallel) algorithm development and hence enjoy perhaps greater computational
efficiency, whereas our theory, being relatively new, has not yet been fully optimized
from a computational standpoint.

Plotted in the results Sections 6.2 and 6.3 (Figs. 5–8) are defect energies per unit
reference volume. This is equivalent to presentation of the energy per atom if each atom
occupies a fixed reference volume. According to linear elasticity theory, for one screw
dislocation, there is a logarithmic decay with distance from the dislocation line of energy
(per unit dislocation line length) due to the stress field of the defect. Furthermore, the
dislocation density in our simulations is controlled by the dimensions of the unit cell (i.e.,
the bounding box of the atoms). For an infinitely periodic array of straight screw
dislocations, the energy per atom should not depend on the system size for a fixed
dislocation density, so long as the orientation of the bounding box with respect to the
dislocation line(s) and the periodicity and spacing of the dislocations are maintained. For
example, quadrupling the area of the box face normal to the dislocation line and adding
three more equivalent dislocations (for a total of four dislocations) would give the same
energy per atom as the original box with one dislocation so long as the atoms surrounding
each of the four dislocations in the enlarged box were to occupy a perfectly periodic
arrangement. The energy would of course depend on the relative dimensions (i.e., aspect
ratio) of the edges of the bounding box; as such, aspect ratios were kept fairly constant in
the simulations in which the absolute size of the unit cell was used to control the defect
density. Thus, it is noted that the shape of the unit cell will have an effect on the defect
density-versus-strain energy relationships, and furthermore, that size effect issues would
appear more prominently for more complicated defect arrangements, such as edge or
mixed dislocations. We also note that even if such size effects are unavoidable, they are not
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necessarily unnatural, and the choice of unit cell dimensions (i.e., number of atoms) is not
restricted by our method in theory, but in practice due to computational convenience.
The effects of defects on elastic modulus and energy reported here, while not profound,

are noticeable. For example, the highest density of dislocations engenders a change in
elastic stiffness constant C1111 on the order of 3% for the unit cells deformed in tension
(Fig. 5(d)) and a change in the anisotropy factor on the order of 10% (Fig. 5(e)). For the
elastic–plastic shear simulations, differences in C1313 on the order of 15% emerge among
the cases considered in Fig. 8(b), though these differences are not highly evident in the
stress–strain curves of Fig. 8(a), whose forms are controlled primarily through the plastic
flow prescription (77). However, in a load-unload scenario (e.g., cyclic fatigue), the
changes in elastic moduli would conceivably be more apparent in the (unloading portion of
the) stress–strain curves. Furthermore, the trends in results presented here do agree
qualitatively with the experimental observation of decreasing modulus with increasing cold
work and dislocation content reported elsewhere, for other metals (Smith, 1953; Lebedev,
1996). The defect energies, while perhaps relatively small in comparison with the total
energy of the system, are thought to be of importance with regards to continuum modeling
of the energy of cold working and internal stresses and size-dependent hardening in strain
gradient crystal plasticity models, as discussed above.
The initial state of the material in our simulations is one containing defects, though these

comprise a local minimum energy configuration in the atomistic sense. Relative to a perfect
defect-free lattice, the system with the defect contains positive total energy, though the
strain energies of both the defective and defect-free systems are considered null in the
undeformed state. In principle, our approach differs from many continuum plasticity
implementations, wherein the defect density is presumed zero initially then and evolves
with FP, for example, as the material work hardens. However, we argue that since all real
materials contain defects initially, our approach is realistic in this regard. The issue could
be resolved in the context of existing continuum theories too, if one assumes that the initial
yield stress is related to the initial defect density, and that the reference state is offset by
some energy value associated with this defect content. In the context of hyperelasticity,
only the derivatives of the energy with respect to elastic deformation contribute to the
stress state, and the absolute value of the energy will not have an effect. Though the choice
of configuration may affect the values of the nonlinear-elastic stiffness tensor, it is
customary in finite elastic–plastic theories to express the elastic moduli in the intermediate
frame (cf. Gurtin, 2002). The numerical results we present for variable elastic stiffness
under applied finite deformations are consistent with our theoretical formulation, though
comparing our results with published values may not be straightforward. For example,
nonlinear elastic effects are often computed experimentally from stress changes upon
perturbations of the displacement field in the spatial frame and then expressed in terms of
derivatives (with respect to strain) of the small strain linear elastic constants (Toupin and
Rivlin, 1960).
This research effort has provided a method for incorporation of the (continuum)

kinematics of finite plasticity in conjunction with defect energy and nonlinear elastic
properties obtained directly from asymptotic homogenization of the atomic scale response.
We do not attempt here to derive continuum plasticity kinetics (e.g., flow rules, yield
surfaces, dislocation velocities and generation rates) from the atomic scale. Our approach
is presently limited to static problems at both fine and coarse length scales. The starting
point for extending our method to dynamic problems would be inclusion of acceleration in
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the momentum balance (Eq. (4)), and following through with the (nontrivial) derivation of
the asymptotic equations including a term accounting for fine scale (i.e., atomic) inertia.
Conceptually, this approach may enable one to consider temperature effects that would be
essential for describing thermally activated dislocation glide and climb. Additionally, the
unit cell calculations would need to be extended to more complicated scenarios (e.g., Frank
Read sources, dislocation pile-ups) to capture strain hardening and dislocation interactions
thought to be of high importance in continuum plasticity. The analysis discussed in Section
6.3, dealing with the oscillatory stress–strain response, demonstrates of how our method
may be applied in a limited sense to plastic phenomena without addressing the above
issues. A simple sinusoidal plastic strain was prescribed in this case (77) as it is perhaps the
most basic, yet still physically realistic, flow model enabling us to demonstrate the energy
and stiffness changes with defects (in the context of our multiscale scheme) simultaneously
incorporating plasticity kinematics. The Peierls-like oscillatory stress–strain curves
(Fig. 8(a)) are a direct outcome of this choice of flow rule, though the key results for
stiffness and energy (Figs. 8(b) and (c)) arise as a consequence of the fine scale, atomic
response and would not be available from a purely continuum-scale analysis. A more
complex flow rule, perhaps accounting for dislocation interactions and temperature, could
easily be incorporated (see e.g. Groma and Pawley, 1993, in the context of discrete
dislocation plasticity), though it is not clear that such an exercise would provide additional
physical insight in the context of the present set of unit cell calculations. Finally, we note
that other multiscale methods such as the quasi-continuum (Shenoy et al., 1999) or
bridging scales method (Park et al., 2005) have not been applied, at least to our knowledge
in a universally accepted manner, to incorporate finite plasticity kinematics and kinetics,
though it may be quite possible for one to do so.

Next, we further consider the advantages of our method in comparison with other
multiscale modeling techniques. The asymptotic homogenization formalism is a
mathematical method for embedding smaller scale information into a larger scale (we
use ‘‘embedding’’ here in a materials modeling sense, not a mathematical sense).
Convergence properties related to two-scale continuum homogenization have been
reported extensively; for example, Bensoussan et al. (1978) discusses how, in the limit
that the scaling parameter is driven to zero, the asymptotic solution converges to the exact
continuum solution for the response (e.g. local displacement field) of an infinitely periodic
medium weakly. We also find it important to point out a feature that distinguishes our
work from other atomistic-continuum multiscale methods. That is that our method does
not require the careful matching of displacement boundary conditions between atomistic
and continuum domains, and, instead, maps derivatives (i.e., deformation gradients)
across length scales. In our technique, the atomic coordinates are not required to share the
same coordinate system and characteristic length scale as the larger continuum since
displacement is not the key inter-scale variable. Instead, a scaling factor (e) here relates fine
and coarse scales. The coarse scale deformation gradient, F is transmitted to the fine scale,
and extra degrees-of-freedom emerge at fine scale associated with our correction to the
Cauchy Born approximation, ~v.

This key difference from other methods holds potential for further development. We
speculate that difficulties in the literature for establishing matching conditions for general
thermodynamic quantities across scales can perhaps be obviated by such an approach. We
contrast this to the displacement matching and ghost force correction of the local–nonlocal
quasi-continuum formulation (Shenoy et al., 1999), and the lattice summation rules
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invoked in the nonlocal quasi-continuum method (Knap and Ortiz, 2001), both of which
require atomic and continuum kinematics to be described by the same coordinate system.
Likewise, we point to the bridging scales method (Park et al., 2005) that employs a matrix
containing values of the finite element shape functions evaluated at all the atomic positions
within the finite element, a technique again requiring that the scales share the same
coordinate system.
The asymptotic nature of our method also permits the consideration of larger scales of

the continuum relative to the fine scale coordinates, though we note that the present paper
focuses on the atomistic influence upon the response of a single continuum material
element as opposed to emphasizing solution of the macroscopic equation (53). For
example, our method could easily be incorporated numerically in a mixed-mesh scenario in
which only regions of special interest are addressed using multiscale finite elements
incorporating atomistic homogenization, with the remainder of the domain discretized
with standard continuum elastic or elastic–plastic finite elements. Similar techniques have
been proposed in the context of two-scale continuum homogenization of solid mixtures
(Oden et al., 1999; Ghosh et al., 2001).
Outside of the context of the homogenization equations, with the attendant material

embedding and convergence features, the very same results can be obtained without the
present developments. Indeed, our intent has been to show validation of the method with
conjugate-gradient-based lattice statics calculations (part (b) of Figs. 4–7), and then to
show how one can extend the calculations to the setting of finite deformation plasticity.
Although the kinetics are prescribed a priori, a limitation discussed above, to date we are
unaware of another atomistic-continuum method enabling all four of the following
features in the context of multiscale modeling of defective crystals: (i) a periodicity
assertion effortlessly addressing the multiscale representation of a finite defect density (i.e.,
non-isolated defects); (ii) governing equations self-consistently derived over two length
scales; (iii) an explicit mathematical statement for the corrected atomic displacements near
defects parametrically dependent on hyperelastic lattice distortions; and (iv) an evolving
intermediate configuration accounting for the stress-free part of dislocation motion in a
general sense, independent of the choice of kinetic model of plasticity.

8. Conclusions

A multiscale method predicated on asymptotic homogenization as been developed and
implemented. The technique enables computation of the macroscopic (i.e., homogenized)
mechanical properties such as effective elastic stiffness and net stress of a deforming unit
cell consisting of periodically arranged discrete atoms at the microscale. The formulation
directly accounts for the effects of defects (e.g. vacancies, dislocations, and/or
misorientation boundaries) on the homogenized mechanical properties, as well as the
lattice-preserving kinematics of finite plastic deformation associated with dislocation flux,
for example, all as functions of the state of deformation. From a computational
standpoint, our homogenization method has been demonstrated to be an accurate
alternative to incremental conjugate gradient schemes in terms of prediction of minimum
energy configurations of atomic degrees of freedom in statically deforming lattices
containing defects. The model framework enables consideration of large continuum scale
elements embedded with finite defect densities, the latter represented explicitly by
periodically perturbed atomic arrangements at the fine scale.
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The homogenization method was implemented numerically (specifically here in single-
finite-element integration point simulations) to study the nonlinear elastic response of BCC
tungsten lattices containing periodically distributed vacancies, screw dislocations and
dipoles, and low-angle twist boundaries. It was found that strain energies associated with
vacancies, screw dislocations, and screw dislocation dipoles tended to increase with applied
uniaxial stretching, while strain energies of twist boundaries tended to decrease with
stretch. Elastic stiffness in the direction of stretch tended to decrease with increasing
dislocation content, and increase with twist grain boundary area. Anisotropy of the elastic
constants of tungsten, nominally isotropic, was also demonstrated at applied deformations
and in the presence of defects. The model was implemented in a limited fashion to study
the elastic–plastic response of tungsten lattices containing fixed distributions of screw
dislocations. In pure shear simulations, influences of dislocation density on shear modulus
and energy density were apparent.

Finally, we summarize the limitations of our approach. Firstly, due to the periodicity
requirement imposed by the homogenization scheme, only perfectly periodic defect
arrangements may be modeled; isolated defects in infinite lattices, while not considered at
present, could conceivably be modeled upon substantial modifications of the theory and
implementation. Secondly, our capability is currently limited to addressing purely
mechanical, rate-independent responses, with the microscopic description predicated upon
a static representation. Hence, finite temperatures and viscous behavior are not captured,
and plasticity kinetics (e.g., thermally assisted dislocation motion) must be prescribed a
priori. Defect densities and numbers of atoms remain fixed throughout our fine scale
simulations, meaning such complex phenomena as vacancy migration, dislocation
generation, and dislocation annihilation are not considered explicitly in the atomistic
domain. Generalizations to the model framework to address the above limitations remain
to be considered in future work.
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